
UNIX Data Tools
Bu�alo Chapter 7

1 / 37

Overview
In Chapter 3 we learned the basic operations within the Unix
shell:

standard out and standard error streams of data

how to redirect our data streams

how to efficiently run a series of commands using pipes

how to manage command processes

Here, we'll learn a number of UNIX tools that will allow us to
inspect and process data

2 / 37

Inspecting a data �le for the �rst time: head
Use the cd command to navigate into the chapter-07-unix-data-tools
folder in the Buffalo online resources

We can inspect a file by using the cat command to print its contents to the
screen:

$ cat Mus_musculus.GRCm38.75_chr1.bed

That's a little unwieldly...perhaps we just want to see the first few lines of
a file to see how it's formatted. Let's try:

$ head Mus_musculus.GRCm38.75_chr1.bed

If we want to see less or more of a given file, we can specify the number
of lines using the -n option:

$ head -n 3 Mus_musculus.GRCm38.75_chr1.bed

3 / 37

Inspecting a data �le for the �rst time: tail
Similar to head, you can use the tail command to inspect the end of a file:

$ tail -n 3 Mus_musculus.GRCm38.75_chr1.bed

tail can also be useful for removing the header of a file; this is
particularly useful when concatenating files for an analysis:

$ tail -n +2 genotypes.txt

And here's a handy trick for inspecting both the head and tail of a file
simultaneously:

$ (head -n 2; tail -n 2) < Mus_musculus.GRCm38.75_chr1.bed
1 3054233 3054733
1 3054233 3054733
1 195240910 195241007
1 195240910 195241007

4 / 37

Additional uses of head
We can also use head to inspect the first bit of output of a UNIX pipeline:

$ grep 'gene_id "ENSMUSG00000025907"' Mus_musculus.GRCm38.75_chr1.gtf | head -n 1

When including head at the end of a complex UNIX pipeline, the pipeline
will only run until it produces the number of lines dictated by head

Why is this important or useful? This dummy pipeline may help:

$ grep "some_string" huge_file.txt | program1 | program2 | head -n 5

5 / 37

Inspecting �les and pipes using less
less is what is known as a "terminal pager"; it allows us to view large
amounts of text in our terminal

Whereas with cat the contents of our file flash before our eyes, with less
we can view and scroll through the file's contents

Let's observe the difference between cat and less using a file from the
Buffalo Chapter 7 materials:

Try:

$ cat contaminated.fastq

Then try:

$ less contaminated.fastq

While viewing the file in less try navigating with the space bar and the b,
j, k, g, and G keys. To exit the file, press q

6 / 37

Using less to highlight text matches and check pipes
Highlighting text matches can allow us to search for potential problems in
data

For example, imagine we download useful Illumina data from another
study and it's not clear from the documentation whether adapter
sequence has been trimmed

We can search for a known 3' adapter sequence using less:

$ less contaminated.fastq

then press / and enter AGATCGG

less can also be used to check the individual components of a pipe under
construction:

$ step1 input.txt | less
$ step1 input.txt | step2 | less
$ step1 input.txt | step2 | step3 | less

The commands will only run until a page of your terminal is full, limiting
computation time

7 / 37

Inspecting �les using the wc command
The default of wc is to provide the number of lines, words, and bytes
(characters) in a file:

$ wc Mus_musculus.GRCm38.75_chr1.bed Mus_musculus.GRCm38.75_chr1.gtf

Each line of data entry in the .bed file should correspond to a single line
of data entry in the .gtf file. Notice any problems?

Using head, see if you can inspect the two files and resolve this issue

The discrepancy in the line numbers, may have been more clear had we
only inspected the number of lines:

$ wc -l Mus_musculus.GRCm38.75_chr1.bed Mus_musculus.GRCm38.75_chr1.gtf

8 / 37

Inspecting �le size using the ls and du commands
Before downloading or moving or running an analysis on a file, it is
useful to know the file size

There are a few ways we can extract this information

First, we can use our old friend, the ls command with the -l and -h
options:

$ ls -lh Mus_musculus.GRCm38.75_chr1.bed

Or we can use the du command, also with the -h, or "human readable"
option:

$ du -h Mus_musculus.GRCm38.75_chr1.bed

Personally, I prefer the less verbose format of du, particularly when
inspecting a large number of files

9 / 37

Inspecting the number of columns in a �le with awk
Another useful piece of information we may want to know about a file is
its number of columns

We could find this by visually inspecting the first line of the file, but this
opens us up to human error:

$ head -n 1 Mus_musculus.GRCm38.75_chr1.bed

A better solution is to have our computers count the columns for us using
an awk one-liner:

$ awk -F "\t" '{print NF; exit}' Mus_musculus.GRCm38.75_chr1.bed

awk is a bit different than some of the basic UNIX commands we've been
learning...it is actually a simple programming language in itself...we'll
come back to it in more depth later

10 / 37

Number of columns in �les with headers
Our handy awk script works well for the Mus_musculus.GRCm38.75_chr1.bed
file, but what about for the Mus_musculus.GRCm38.75_chr1.gtf file?

We can get around this issue by employing the tail command we learned
earlier:

$ tail -n +6 Mus_musculus.GRCm38.75_chr1.gtf | awk -F "\t" '{print NF; exit}'

In the Buffalo book, this one-liner outputs that there are 16 columns...is
this what you get?

Thinking back to the first few chapters in Buffalo and our discussion
regarding "robust" and "reproducible" code, why might this be considered
a "brittle" solution?

Can you think of a more robust solution?

$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | awk -F "\t" '{print NF; exit}'

How might this be a brittle solution?

11 / 37

Using the cut command to extract speci�c columns
On occasion, we will want to extract a subset of specific information from
a file

The cut command assumes tab delimitation and allows us to extract
specific columns of a tab-delimited file

For example, say we wanted just the start positions of the windows in our
.bed file:

$ cut -f 2 Mus_musculus.GRCm38.75_chr1.bed | head -n 3

12 / 37

Using the cut command to extract speci�c columns
The -f option allows us to specify columns in ranges (e.g., -f 3-8) and sets
(e.g., -f 1,3,5) but DOES NOT allow us to order columns (e.g., -f 7,3,1)

For example, we can extract chromosome, start site, and end site from our
.gtf file by first removing the header and then cutting out the first, fourth,
and fifth columns:

$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | cut -f 1,4,5 | head -n 5

We can also specify the delimiter in differently formatted files like .csv:

$ cut -d "," -f 2,3 Mus_musculus.GRCm38.75_chr1_bed.csv | head -n 3

13 / 37

Tidying things up with column
Often times, when we inspect a tab-delimited file with head, the results are
fairly messy:

$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | cut -f1-8 | head -n3

This can make it difficult to understand file contents

Fortunately, there's a UNIX program/option combination to tidy things up:
column -t

$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | cut -f 1-8 | column -t \
 | head -n 3

column should only be used for file inspection in the terminal, redirecting
its standard out to a file will introduce variable numbers of spaces which
could cause problems in downstream analysis

column can also be used with files with other delimiting characters:

$ column -s "," -t Mus_musculus.GRCm38.75_chr1_bed.csv | head -n 3

14 / 37

grep: one of the most powerful UNIX tools
Thus far we've only scratched the surface of the utility of grep

In addition to being useful, grep is fast

15 / 37

grep: one of the most powerful UNIX tools
The program grep requires a pattern to search for and a file to search
through:

$ grep "Olfr418-ps1" Mus_musculus.GRCm38.75_chr1_genes.txt

Quotes around the pattern prevent our shell from trying to interpret
symbols in the pattern

grep will also return partial matches:

$ grep Olfr Mus_musculus.GRCm38.75_chr1_genes.txt | head -n 5

If a partial match is not desired, we can prevent this using the -w option
which matches entire words

For example, in the example.txt file we want to match everything but
"bioinfo":

$ cat example.txt
$ grep -v "bioinfo" example.txt
$ grep -v -w "bioinfo" example.txt

16 / 37

grep: one of the most powerful UNIX tools
General grep rule: always be as restrictive as possible to avoid
unintentional matches

If the matching line itself does not provide enough context, the -B and -A
options can be helpful:

$ grep -B1 "AGATCGG" contam.fastq | head -n 6
$ grep -A2 "AGATCGG" contam.fastq | head -n 6

grep search patterns can also be made more flexible and powerful with
Basic Regular Expressions (BRE) and Extended Regular Expressions (ERE)

An example of a BRE:

$ grep "Olfr141[13]" Mus_musculus.GRCm38.75_chr1_genes.txt

An example of an ERE:

$ grep -E "(Olfr218|Olfr1416)" Mus_musculus.GRCm38.75_chr1_genes.txt

17 / 37

Additional grep uses with various options
Say we're interested in the number of small nuclear RNAs in our set of
genes:

$ grep -c 'gene_biotype "snRNA"' Mus_musculus.GRCm38.75_chr1.gtf

Or perhaps we only want grep to extract the word matches to our search
pattern, not the entire line:

$ grep -o "Olfr.*" Mus_musculus.GRCm38.75_chr1_genes.txt | head -n 3

18 / 37

Identi�cation of non-ASCII �les and characters
In bioinformatics, many programs will assume that our input text files are
encoded in ASCII

Occasionally, often due to human manipulation of data files, our data can
include include an invisible non-ASCII character that throws our program
for a loop

To easily determine whether a given file is encoded in something other
than ASCII, the file command can be quite useful:

$ file Mus_musculus.GRCm38.75_chr1.bed Mus_musculus.GRCm38.75_chr1.gtf
$ file improper.fa

19 / 37

Illustrating the trouble a non-ASCII character can cause
To show how non-ASCII characters can cause problems, we'll install the
program bioawk from github

If you're working on hpc-class:

module load bioawk

If you're working on a directory on your own machine:

$ git clone git://github.com/lh3/bioawk.git
$ cd bioawk
$ make
$ sudo cp bioawk /usr/local/bin/

Or if you've installed Homebrew:

$ brew tap homebrew/science
$ brew install bioawk

20 / 37

Illustrating the trouble a non-ASCII character can cause
Now let's apply the following bioawk one-liner which should produce the
reverse complement of our sequences:

$ bioawk -cfastx '{print revcomp($seq)}' improper.fa

Shoot...bioawk choked on our second sequence...non-ASCII character!!

21 / 37

Sleuthing out our non-ASCII character with hexdump
hexdump will identify the problematic character and the -c option will print
the character as well:

$ hexdump -c improper.fa
0000000 > g o o d - s e q u e n c e \n A
0000010 G C T A G C T A C T A G C A G C
0000020 T A C T A C G A G C A T C T A C
0000030 G G C G C G A T C T A C G \n > b
0000040 a d - s e q u e n c e \n G A T C
0000050 A G G C G A C A T C G A G C T A
0000060 T C A C T A C G A G C G A G 221
0000070 G A T C A G C T A T T \n
000007c

22 / 37

Sorting plain-text data with sort
Sorting plain text data can be necessary because:

1. Some operations are more efficient when working on sorted data

2. In order to find unique lines, we must first have sorted data

First, let's sort the example.bed file without options to see if we can figure
out how the default program works:

$ sort example.bed

Options allow us to sort by specific columns in various orders and to tell
sort that our data are numeric rather than alpha-numeric:

$ sort -k1,1 -k2,2n example.bed

Now see if you can figure out how to sort the
Mus_musculus.GRCm38.75_chr1_random.gtf file, first by chromosome, then by
window start site

23 / 37

Additional features of sort
Since sorting very large files can be computationally intensive, we may
want to check whether a file is already sorted first using the -c option:

$ sort -k1,1 -k2,2n -c example.bed
$ echo $?
$ sort -k1,1 -k2,2n example.bed > example_sorted.bed
$ sort -k1,1 -k2,2n -c example_sorted.bed
$ echo $?

We can also sort files in reverse order using the -r option:

$ sort -k1,1 -k2,2n -r example.bed

But how is this sorting?

Can you think of a way to sort in reverse order based on both columns 1
and 2?

What if we want to sort in forward order by column 1 and reverse order
by column 2?

24 / 37

Advanced sorting options in GNU
The -V option can recognize numbers inside of strings...how might this be
useful?

Inspect the entire example2.bed file:

$ cat example2.bed

Why might we want to recognize numbers within a string here?

$ sort -k1,1 -k2,2n example2.bed

$ sort -k1,1V -k2,2n example2.bed

In the event that you want to sort a truly enormous file, there are
modifications to sort that can be applied to allocate more memory to the
program:

$ sort -k1,1 -k4,4n -S2G Mus_musculus.GRCm38.75_chr1_random.gtf

$ sort -k1,1 -k4,4n --parallel 4 Mus_musculus.GRCm38.75_chr1_random.gtf

25 / 37

Finding unique values using the program uniq
After first inspecting the entire letters.txt file, run the uniq program on
this file and see if you can understand how this program works

$ cat letters.txt

$ uniq letters.txt

What do we need to do to get a truly unique list of letters?

$ sort letters.txt | uniq

And what if we want unique values but still want want a count of each
letter?

$ sort letters.txt | uniq -c

And if you're still not convinced that this could be useful, try this:

$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | cut -f3 | sort | uniq -c

26 / 37

Finding unique values using the program uniq
The uniq output can also be sorted based on entry counts by piping to sort
and using the -n option:

$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | cut -f3 | sort | uniq -c | \
 sort -n

What if you wanted these listed from most to least common in the file?

We can also use the combination of sort and uniq to gather information
from multiple columns in a file:

$ grep -v "^#" Mus_musculus.GRCm38.75_chr1.gtf | cut -f3,7 | sort | uniq -c

Or we can use these programs to process and inspect a subset of data
from a file...for example, all the features associated with a particular
gene:

$ grep "ENSMUSG00000033793" Mus_musculus.GRCm38.75_chr1.gtf | cut -f3 | sort \
 | uniq -c

27 / 37

Merging the contents of two �les with the program join
The contents of two files can be merged by joining the files based on a
common column

In the following two files, what would be the common column to use for a
join?

$ cat example.bed

$ cat example_lengths.txt

In order to complete the join, we must first sort both files on the common
column

$ sort -k1,1 example.bed > example_sorted.bed

$ sort -c -k1,1 example_lengths.txt

Let's talk through the following syntax to make sure it's clear:

$ join -1 1 -2 1 example_sorted.bed example_lengths.txt > example_with_lengths.txt

28 / 37

Merging the contents of two �les with the program join
Let's also look at the number of lines in our files to see if the join was
complete:

$ wc -l example_sorted.bed example_lengths.txt example_with_lengths.txt

Now let's see what happens when there is not complete overlap in our
common columns:

$ head -n2 example_lengths.txt > example_lengths_alt.txt

$ join -1 1 -2 1 example_sorted.bed example_lengths_alt.txt

$ join -1 1 -2 1 example_sorted.bed example_lengths_alt.txt | wc -l

Because chr3 is absent from the example_lengths_alt.txt file, it is omitted
entirely from the join

The GNU join option -a allows us to include these "unpairable" lines in
our output file:

$ join -1 1 -2 1 -a 1 example_sorted.bed example_lengths_alt.txt

29 / 37

Processing data with the awk programming language
Unlike the UNIX programs we've been learning, awk is a full-fledged
programming language

awk is simpler then python and not built for complicated tasks, but it's great
for quick data-processing tasks

To learn awk we must understand how it:

1. Processes records

2. Uses pattern-action pairs

Awk processes data a record at a time and records are composed of fields

Awk assigns the entire record to variable $0, field 1 to $1, field 2 to $2, etc...

In pattern-action pairs, awk first tries to match a specified pattern in a
record or field and, if this is successful, the specified action is carried out

30 / 37

Processing data with the awk programming language
We can mimic the cat program with awk by omitting the pattern
component of a pattern-action pair:

$ awk '{ print $0 }' example.bed

Similarly, we can also mimic cut:

$ awk '{ print $2 "\t" $3 }' example.bed

Standard arithmetic operators (+, -, *, /, etc...) can be used in the pattern
component of pattern-action pairs

For example, here our pattern is matching .bed file features that are at
least 18bp long and the implicit action is to print matches to standard out:

$ awk '$3 - $2 > 18' example.bed

31 / 37

Processing data with the awk programming language
We can also link patterns in a chain to apply multiple conditions in our
pattern using the && (AND), || (OR), and ! (NOT) operators

For example, if we want the .bed features that are on chromosome 1 AND
at least 10bp long:

$ awk '$1 ~ /chr1/ && $3 - $2 > 10' example.bed

We can also include more explicit actions than just printing an entire
record to standard out:

$ awk '$1 ~ /chr2|chr3/ { print $0 "\t" $3 - $2 }' example.bed

32 / 37

Additional functionality of the awk programming language
The pattern-process awk tools we have learned thus far are very useful for
processing files, but awk has many more useful tools

The BEGIN and END commands can allow us to initialize variables before
implementing our pattern-process across records (BEGIN) and use this
variable afterwards (END):

$ awk 'BEGIN{ s = 0 }; { s += ($3-$2) }; END{ print "mean: " s/NR };' example.bed

Here we initialize the variable s and increment (+=) this variable by the
length of each feature across all records and then divide this by NR...what
is NR?

NR can also be used to extract intermediate records (i.e., lines) in a file (the
same process we discussed using head and tail in a pipe):

$ awk 'NR >= 3 && NR <= 5' example.bed

33 / 37

Additional functionality of the awk programming language
awk can also be used to convert a .gtf file into a .bed file:

$ awk '!/^#/ { print $1 "\t" $4-1 "\t" $5 }' Mus_musculus.GRCm38.75_chr1.gtf |
 \ head -n 3

Note that the start site of features in the .bed file is 1 less than the start
site of features in the .gtf file: .bed uses 0-indexing and .gtf uses 1-
indexing

Associative arrays (similar to Python dictionaries) can also be very useful
in awk:

$ awk '/Lypla1/ { feature[$3] += 1}; \
 END { for (k in feature) \
 print k "\t" feature[k] }' Mus_musculus.GRCm38.75_chr1.gtf

Could this also be done with basic UNIX commands?

34 / 37

bioawk: awk functionality more tailored to bioinformatics
bioawk is similar to awk but it can recognize common bioinformatics file
formats (e.g., .bed, .sam, .vcf, .gff, .fastx) and includes useful programs for
bioinformatics

$ bioawk -c gff '$feature ~ /gene/ && $source ~ /protein_coding/ \
 {print $seqname,$end-$start}' Mus_musculus.GRCm38.75_chr1.gtf | head -n 4

You could also use bioawk to convert a fastq into a fasta file:

$ bioawk -c fastx '{print ">"$name"\n"$seq}' contam.fastq | head -n 4

Or to print the number of sequences in a fastq/fasta file, something you
couldn't do with wc:

$ bioawk -c fastx 'END{print NR}' contam.fastq

35 / 37

bioawk: awk functionality more tailored to bioinformatics
Finally, the option -c hdr can be very useful as it sets the field variables to
the names given in a file header

For example, take another look at the genotypes.txt file:

$ head -n 4 genotypes.txt

Let's use the -c hdr option to find the markers where ind_A and ind_B
have the same genotype:

$ bioawk -c hdr '$ind_A == $ind_B {print $id}' genotypes.txt

36 / 37

Using the sed program to edit text in a stream
In addition to many other functions, we can use sed to make simple "find
and replace" edits to our files:

$ head -n 3 chroms.txt

$ sed 's/chrom/chr/' chroms.txt | head -n 3

If this file were many Gb in size, this stream editing would be much, much
faster than opening the file and doing a find and replace in a text editor

The above syntax only substitutes the first occurence of "chrom" on a line,
to do this across all "chrom" values we'd need to use the global option of
sed:

$ sed 's/chrom/chr/g' chroms.txt

37 / 37

