
Delving more deeply into UNIX
Bu�alo Chapter 3

1 / 21

Overview
1) A Little Review

2) Unix Exercise and Tutorials

3) New UNIX material:
Standard Out and Standard Error
Creating and navigating through directories
Using wildcards
The Pipe and behold, grep!
Redirecting streams in pipes
Managing processes
Checking process exit status

2 / 21

A little review...
What are some ways you can make an analysis pipeline reproducible?

What are some ways you can make an analysis pipeline robust?

What are some other key lessons we discussed from Buffalo Chapter 1 or,
better yet, that you learned in your own reading?

What are the kernel, the shell, and commands?

3 / 21

Unix Exercise and Tutorials:
As a reminder, in the Week_01 folder of the GitHub repository, I have
placed a UNIX exercise and instructions for how to log in and complete
this on hpc-class

I would continue working through this this weekend, and, since Monday
is Labor Day and there are no classes, type questions in Slack.

If you would like additional, basic tutorials on UNIX some online
resources include:

https://sites.google.com/site/eeob563/computer-labs/Lab-1

ftp://ftp.imicrobe.us/biosys-analytics/lectures/unix_and_perl_v3.0.pdf

And before going further: Any ideas how and when UNIX can be useful?

4 / 21

https://sites.google.com/site/eeob563/computer-labs/Lab-1
ftp://ftp.imicrobe.us/biosys-analytics/lectures/unix_and_perl_v3.0.pdf

And now for something new...

5 / 21

Standard Out and Standard Error

What is the difference between standard output and standard error?

Within the Week_01 folder you have several examples files; once inside the
folder try this:

$ cat file1 file2 file3

In the output, what is standard out and what is standard error?

6 / 21

Standard Out and Standard Error
How can standard output and standard error be redirected?

$ cat file1 file2 file3 > data 2> error

How can standard out be appended to an existing file?

$ cat file4 file5 >> data

7 / 21

Creating and navigating through directories:
Let's set up a project as in Buffalo Chapter 3:

$ mkdir zmays-snps
$ cd zmays-snps
$ mkdir data
$ mkdir data/seqs scripts analysis

Try this in your course folder and use the ls and cd commands to make
sure you understand what is happening with the last line of code

From within the seqs folder, how might you navigate to the zmays-snps
folder in one line of code?

8 / 21

The rm command and why nerds use underscores in their
folder/�le names:

Let's create a folder in zmays-snps with a space in its name: raw sequences

mkdir raw\ sequences

Now in zmays-snps let's create two more folders:

$ mkdir raw sequences

Over the next few weeks we pile data into raw and sequences and then one
night when we're under-caffeinated we decide to remove the raw
sequences folder:

$ rm -rf raw sequences

What just happened?

How should we have removed the raw sequences folder?
9 / 21

Using shell expansion to make your life easier:
Let's go ahead and delete the nice zmays-snps directory we've created:

$ rm -rf zmays-snps

Note that this folder and all its subdirectories are erased...thank you -rf
option

Now let's try creating the entire project directory in a single line of code:

$ mkdir -p zmays-snps/{data/seqs,scripts,analysis}

Explain exactly what's going on here...

Note the use of the -p option for the mkdir command which allows for
creation of intermediate directories as required

Let's use shell expansion to create some files in our reconstructed project
directory:

$ cd zmays-snps/data
$ touch seqs/zmays{A,B,C}_R{1,2}.fastq

10 / 21

Wildcards can make your life easier too!
Navigate into your seqs folder and use the ls command in combination
with the * and ? wildcards to match subsets of the files we just created

How do * and ? match differently?

Let's create new R1 and R2 folders and use a wildcard range to move only
the "A" and "B" files into these new folders:

$ mv zmays[AB]_R1* R1
$ mv zmays[AB]_R2* R2

Convince yourself only the appropriate files have been moved and then
move the "C" files as well

Always be careful with wildcards, particularly when using the rm
command. For example:

How are these different?

$ rm -rf tmp-data/aligned-reads*

$ rm -rf tmp-data/aligned-reads *

11 / 21

The Pipe
In this example, how are standard out and standard error streams being
funneled?

$ cat file1 file2 | grep "AGGATA" | wc

Why pipe rather than create intermediate files?

Behold the mighty grep command!!

Let's see what this command can do using an example from Buffalo
Chapter 3...

First, we need to clone supplementary material for the book into hpc-class
so cd to the top of your directory and type:

$ git clone https://github.com/vsbuffalo/bds-files

12 / 21

Suppose we're working with a program that throws an error telling us that
our fasta input file has non-nucleotide characters. Let's use grep in a pipe to
inspect our input file:

$ grep -v "^>" tb1.fasta | grep --color -i "[^ATGC]"

13 / 21

Controlling streams within pipes
Pipes can string together multiple programs and increase the efficiency of
our analysis

However, imagine your pipe includes 20 programs and multiple errors
are thrown to your display during the analysis

Which program had the issue printed to standard error?

Let's talk through an example of how to manage this:

$ program1 input.txt 2> program1.stderr | \
 program2 2> program2.stderr > results.txt

But what if we want to send our standard output and standard error to
the same place?

$ program1 input.txt 2>&1 | grep "error"

14 / 21

But what if I really love intermediate �les?
Sometimes you or your collaborator may need intermediate files in a
pipeline for other analyses or for debugging

Can you retain the efficiency of the pipe while also creating intermediate
files?

You betcha:

$ program1 input.txt | tee intermediate-file.txt | program2 > results.txt

15 / 21

Managing processes: sending programs to the background:
Often times our UNIX programs and pipelines will run for an extended
amount of time

It is not terribly convenient to sit and stare at our terminal for weeks at a
time

The running job also ties up our terminal if we're running it in the
foreground (however, you can open up multiple tabs or terminals)

One solution to this is running your analysis in the background using the
ampersand:

$ program1 input.txt > results.txt &

This process will be run in the background, freeing up your terminal, and
a process ID will be provided:

[1] 25744

16 / 21

Managing processes: checking status and bringing to the
foreground:

Say the next day we come to work and want to check quickly whether our
analysis is still running:

$ jobs
[1]+ Running program1 input.txt > results.txt

And what if, now that we're back at work, we want to stare at the process
while it runs all day?

This is where your process ID number will come in handy:

$ fg %25744

Now you can watch your process run to your heart's content

Question: What happens when you run a program in the background and
close your terminal application?

17 / 21

Managing processes: sending active programs to the
background:

Say you start a program, realize it's going to take forever to run and then
want to send it to the background...

$ program1 input.txt > results.txt
$ # enter control-z here...NOT CONTROL-C!!
[1]+ Stopped program1 input.txt > results.txt
$ bg
[1]+ program1 input.txt > results.txt

To irrevocably kill a job type "control-c"; your job must be in the
foreground for this to work

18 / 21

Checking the exit status of a completed program
Say we come into work and find our program has completed with no
errors printed to our display

To double-check that all has gone swimmingly, we can check the exit
status by inspecting our shell variable:

$ grep -v "^>" tb1.fasta | grep --color -i "[^ATGC]"
CCCCAAAGACGGACCAATCCAGCAGCTTCTACTGCTAYCCATGCTCCCCTCCCTTCGCCGCCGCCGACGC
$ echo $?
0

You can utilize the exit status in your pipelines by implementing the shell
operators && and ||

A few examples:

$ program1 input.txt > intermediate-results.txt && \
 program2 intermediate-results.txt > results.txt

$ program1 input.txt > intermediate-results.txt || \
 echo "warning: an error occurred"

19 / 21

Exit status operators, true and false
There are two Unix commands that are very useful for understanding exit
status, the shell variable and operators: true and false

true always sets the shell variable to 0 (success)

false always sets the shell variable to 1 (failure)

Try the following commands and see if what they return makes sense to
you:

$ true && echo "first command was a success"
$ true || echo "first command was not a success"
$ false || echo "first command was not a success"
$ false && echo "first command was a success"

20 / 21

Command substitution:
Sometimes rather than piping, we may actually want to nest commands
within other commands

This process is called "command substitution" and here are a few
examples...

cd into the chapter-03-remedial-unix folder of your Buffalo online
materials and in your terminal type:

$ echo "There are $(grep -cv '^>' tb1.fasta) lines of sequence in my FASTA file."

What is the result, and what's going on here?

Now cd into your in_class folder and try:

$ mkdir results-$(date +%F)
$ ls

You can name folders and files with today's date without even knowing
what that is!

21 / 21

