
Welcome to BCB/EEOB546!

Computational Skills
for Biological Data

Instructors:
Matt Hufford

Arun Seetharam
Dennis Lavrov

Introduction and Basic Unix
What motivated us to teach this class?

Introduction and Basic Unix
What motivated you to take this class?

✦ Many of you likely have interest in more specific
applications (e.g., transcriptomics, formal sequence
analysis, GWAS, etc…)

✦ This course will focus on basic skills that will be
necessary for working with large data sets and will
be useful in these applications…it’s a first step

✦ You all are drinking from the data firehose!

Introduction and Basic Unix
Our Objectives

By the end of this course, you should:

• Navigate through your computer, create and modify files
and directories, and process data using basic Unix
commands

• Become familiar with basic R syntax and data structures
and implement these in data analysis and plotting.

• Utilize the Python scripting language for more
sophisticated data processing.

Introduction and Basic Unix
Our Objectives

By the end of this course, you should:

• Become familiar with various genomic data types (range,
sequence, and alignment data) and learn how to write
scripts and analysis pipelines for working with these data.

• Become familiar with high performance computing
resources at Iowa State as well as how and when to
employ these resources.

• Explore additional resources/topics in computational
biology including manuscript preparation in LaTeX and
Overleaf and creation of NSF-style Data Management
Plans.

Introduction and Basic Unix
Our Textbooks

✦ Written to help address
sudden need in biology to
be able to handle Big Data

✦ Available through Amazon
(hard copy), O’Reilly (hard
copy and eBook), and ISU
Library (eBook, FREE!!)

Introduction and Basic Unix
Our Textbooks

Introduction and Basic Unix
How will we communicate?

Slack

Introduction and Basic Unix
What is our schedule?

Google Sheet

https://docs.google.com/spreadsheets/d/
1E0ioNiW0NR3kR_AxA_0lRhMKs8QXlx4L63vpXVt2s4U/edit?

usp=sharing

Introduction and Basic Unix
How will grades be assigned?

Grading:

Assignment 1: Unix 15%
Assignment 2: R 15%
Assignment 3: Python 15%
Assignment 4: Data Management Plan 15%
Group Project and Presentation 40%

Chapter 1

✦ Our two main goals in bioinformatics are to have
research that is reproducible and robust

✦ How can we make our analysis reproducible?

✦ How can we make our analysis robust?

Chapter 1

✦ Writing code for humans makes it reproducible, but
it must still be readable by your computer

Chapter 1
✦ Adding in tests for your code helps avoid the

dreaded silent errors and makes your research
more robust

def add(x, y):
"""Add two things together.""" return x + y

def test_add():
"""Test that the add() function works for a variety of numeric types.""" assert(add(2, 3) == 5)
assert(add(-2, 3) == 1)
assert(add(-1, -1) == -2)
assert(abs(add(2.4, 0.1) - 2.5) < EPS)

Chapter 1

✦ If a library already exists for what you want to do,
why not use it?

✦ Do not modify your raw data directly (treat as
“Read Only”)

✦ If you’re going to use a script multiple times, turn it
into a tool:
✦ document it
✦ create versions
✦ make your command-line arguments clear
✦ sharing in a version-controlled repository

Chapter 1

✦ Publish both your scripts and data

✦ Also publish your documentation and document
everything!

✦ What’s the difference between documenting a script and
a project? How might we do both?

✦ Make an analysis and the figures showing the results
of an analysis the product of a script

Intro. to Computational Methods
UNIX

✦ UNIX is an operating system originally developed by
AT&T’s Bell Labs in the 1960’s (then Novell, then
The Open Group)

✦ “Operating System” = Suite of programs that make
your computer work

✦ macOS is one flavor of UNIX; others are Linux,
Solaris, BSD

Intro. to Computational Methods
UNIX

(1) The Kernel: OS Hub; allocates memory and
time

(2) The Shell: Interface between user and the
kernel; the shell searches for command files called
by user and passes requests to the kernel

(3) Programs: Commands called by the user

The UNIX OS has three components:

Intro. to Computational Methods
UNIX

✦ UNIX is modular: What does this mean?

✦ UNIX handles data as a stream

✦ A given program generates standard output and
standard error streams: What is the difference?

✦ How can we redirect streams?

Note that nothing is printed to your terminal screen when you redirect standard out‐
put to a file. In our example, the entire standard output stream ends up in the zea-
proteins.fasta file. Redirection of a standard output stream to a file looks like
Figure 3-1 (b).

Figure 3-1. (a) Unredirected standard output, standard error, and standard input (the
gray box is what is printed to a user’s terminal); (b) standard output redirected to a !le

We can verify that our redirect worked correctly by checking that the mostly recently
created file in this directory is the one we just created (i.e., zea-proteins.fasta):

ls -lrt
total 24
-rw-r--r-- 1 vinceb staff 353 Jan 20 21:24 tb1-protein.fasta
-rw-r--r-- 1 vinceb staff 152 Jan 20 21:24 tga1-protein.fasta
-rw-r--r-- 1 vinceb staff 505 Jan 20 21:35 zea-proteins.fasta

Adding -lrt to the ls lists files in this directory in list format (-l), in reverse (-r)
time (-t) order (see man ls for more details). Also, note how these flags have been
combined into -lrt; this is a common syntactic shortcut. If you wished to see the
newest files at the top, you could omit the r flag.

Redirecting Standard Error
Because many programs use the standard output stream for outputting data, a sepa‐
rate stream is needed for errors, warnings, and messages meant to be read by the user.
Standard error is a stream just for this purpose (depicted in Figure 3-1). Like standard
output, standard error is by default directed to your terminal. In practice, we often
want to redirect the standard error stream to a file so messages, errors, and warnings
are logged to a file we can check later.

To illustrate how we can redirect both standard output and standard error, we’ll use
the command ls -l to list both an existing file (tb1.fasta) and a file that does not
exist (leafy1.fasta). The output of ls -l for the existing file tb1.fasta will be sent to
standard output, while an error message saying leafy1.fasta does not exist will be out‐

Working with Streams and Redirection | 43

Introduction and Basic Unix
Our Computational Goals for Today

1. Make sure everyone has a Shell solution

2. Installation of GitBash if necessary

3. Clone the Git repository for the
textbook and the course

4. Work through a Basic Unix example

Introduction and Basic Unix
Where to from here?

1. If the basic Unix commands in our example were all new
(and even if they weren’t!), you should consider working
through the Unix portions of these tutorials :

 https://sites.google.com/site/eeob563/computer-labs/Lab-1

 http://korflab.ucdavis.edu/Unix_and_Perl/

2. If you haven’t already, read Chapters 1-3 of Buffalo
• For Chapter 1, create a text snippet in Slack with a few

favorite points and any questions on points that were
not clear, and we’ll discuss these on Friday

• We’ll also discuss and work through examples from
Chapter 3 on Friday

http://korflab.ucdavis.edu/Unix_and_Perl/

