Welcome to BCB/EEOB546!

Computational Skills
for Biological Data

|Instructors:

Matt Hufford
Arun Seetharam
Dennis Lavrov

Introduction and Basic Unix
What motivated us to teach this class?

Cost per Megabase of DNA Sequence

1.25e+08 -
— bases
===+ open access bases
$1,000.00 —
1.00e+08 -
>
S
B
(@]
$100.00 - &
o 7.50e+07 -
o [72]
25
°2
<gm
T
8 (0]
$10.00 ~ g
+ -£ 5.00e+07 -
o
e
n
Y—
(o]
(0]
N
%)
$1.00 -
2.50e+07 -
$0.10 -
0.00e+00 -
I I I 1 I 1) I I 1 1 I 1
2002 2004 2006 2008 2010 2012 2008 2009 2010 2011 2012 2013
Date Date

Introduction and Basic Unix
What motivated you to take this class?

+ Many of you likely have interest in more specific
applications (e.g., transcriptomics, formal sequence

analysis, GWAS, etc...)
+ This course will focus on basic skills that will be
necessary for working with large data sets and will

be useful in these applications...it’s a first step

+ You all are drinking from the data firehose!

Introduction and Basic Unix
Our Objectives

By the end of this course, you should:

» Navigate through your computer, create and modify files
and directories, and process data using basic Unix
commands

+ Become familiar with basic R syntax and data structures
and implement these in data analysis and plotting.

» Utilize the Python scripting language for more
sophisticated data processing.

Introduction and Basic Unix
Our Objectives

By the end of this course, you should:

* Become familiar with various genomic data types (range,
sequence, and alignment data) and learn how to write
scripts and analysis pipelines for working with these data.

+ Become familiar with high performance computing
resources at lowa State as well as how and when to
employ these resources.

» Explore additional resources/topics in computational
biology including manuscript preparation in LaTeX and
Overleaf and creation of NSF-style Data Management
Plans.

Introduction and Basic Unix
Our Textbooks

+ Written to help address
sudden need in biology to
be able to handle Big Data

+ Available through Amazon
(hard copy), O’Reilly (hard

copy and eBook), and ISU
Library (eBook, FREE!!

i

Bioinformatics
Data Skills

REPRODUCIBLE AND ROBUST RESEARCH WITH OPEN SOURCE TOOLS

Vince Buffalo

Introduction and Basic Unix
Our Textbooks

0 Introduction 1

Computing Skill Ui ”
fOI' BlOIOngt 2 Version Control 55
' 3 Basic Programming 81
A TOOLBOX
4 Writing Good Code 120
5 Regular Expressions 165
6 Scientific Computing 185
7 Scientific Typesetting 220
8 Statistical Computing 249
9 Data Wrangling and Visualization 300
10 Relational Databases 337

Stefano Allesina and Madlen Wilmes 11 Wrapping Up 366

N N

Introduction and Basic Unix
How will we communicate?

Slack Connect

general

Slack

. » o\ >
Q. Search BioDataSkills) N & A
general v General course announcements and communication. https... ﬁ’ﬁ: 21

* 2Pinned <+ Add abookmark

Yesterday v
Samuel Sterinbach 2:20 PMm

joined #general along with 4 others.

Matthew Hufford %, 2:48 PM
¥ Welcome to EEOB/BCB546 Folks!

For those of you searching for the course textbook to get a jump on your reading, you can access an
electronic version for free through the library’s website (just search by title/author on the frontpage)

This link may also work, depending on your browser, but you'll have to sign i & Q 2 R
2:49 https:/learning.oreilly.com/library/view/bioinformatics-data-skills/9781449367480/

% O O'Reilly Online Learning
Bioinformatics Data Skills

Learn the data skills necessary for turning large sequencing datasets into &
reproducible and robust biological findings. With this practical guide, you’ll

learn how to use freely available open source tools ... - Selection from

Bioinformatics Data Skills [Book]

B Elizabeth McMurchie 2:55 PMm
joined #general along with 9 others.

B I & & R = <> Y

Introduction and Basic Unix
What is our schedule?
Google Sheet

https://docs.google.com/spreadsheets/d/
1EOQIoNIWONR3KR_AxA_O0IRhMKs8QXIx4L63vpXVi2s4U/edit?
usp=sharing

Introduction and Basic Unix
How will grades be assigned?

Grading:

Assignment 1: Unix 15%
Assignment 2: R 15%
Assignment 3: Python 15%
Assignment 4: Data Management Plan 15%
Group Project and Presentation 40%

Chapter |

+ Our two main goals in bioinformatics are to have
research that is reproducible and robust

+ How can we make our analysis reproducible!?

+ How can we make our analysis robust?

Chapter |

+ Writing code for humans makes it reproducible, but
it must still be readable by your computer

#! user/bin/perl

PatHaps.pl by Matthew Hufford
use strict;

use warnings;

#define a hash of allele frequencies from the bulked seed
open AF, "<AllFreq.txt" or die "fail!\n\n";

my S%data;
while (<AF>) { #always name "IN" file uniquely to avoid corrupting files
chomp; # removing endlines

my $AllFreq = $_;

my ($locus, $allele, $freq) = split("\t", $AllFreq);

$data{slocus}->{sallele}=%freq; #creating a hash of hashes--locus and allele are keys to the $freq value
}

close AF;

#read in the set of dad haplotypes from file "PatGenosIN.txt"
open PG, "<PatGenosIN(-9).txt" or die "fail\n\n";

my ($patallele_id, @genos) = <PG>; #first line turned into string, rest of file turned into an array
close PG;

print ‘cp Pools2Format.txt outfile.txt’;

my @patallele_id = split("\t", $patallele_id); #creating array of loci names from string of first line

open OUT, ">>outfile.txt";
print (OUT "\n");

foreach my $dad (@genos) {
chomp $dad;

my ($dadID, @linedata) = split ("\t", %$dad); #splitting paternal ID from array of genotypes

print (OUT "$dadID\t@\to\t"); #printing dad ID with a tab

for my $a (@..s$#linedata) { #creating a list from @ to the number of scalars in each line of the array; the $# notation indicates the total number in arr
my $allele=$linedatalsal; #putting list into the array and creating a string of allele calls that are at those positions.
if ($allele =~ m/&/) { #matching all alleles that contain an ampersand

my ($allelel, $allele2) = split ("&", $allele); #creating an array of the two possible alleles
my $freqgl=$data{spatallele_id[$al}->{Sallelel}; #creating frequency scalar for each allele 1
my $freq2=$data{spatallele_id[$a]}->{sallele2}; #creating frequency scalar for each allele 2

if (rand()<($freql/(sfreql+$freg2))) { #assessing whether random number between @ and 1 is less than freq 1
print (OUT "sallelel\t\-9\t");

else {
print (OUT "sallele2\t\-0\t");
}

Chapter |

+ Adding in tests for your code helps avoid the
dreaded silent errors and makes your research
more robust

def add(x, y):
""Add two things together.""" return x +y

def test_add():

"""Test that the add() function works for a variety of numeric types.""" assert(add(2, 3) ==5)
assert(add(-2,3) == 1)

assert(add(-1, -1) ==-2)

assert(abs(add(2.4,0.1) - 2.5) < EPS)

Chapter |

+ If a library already exists for what you want to do,
why not use it!

+ Do not modify your raw data directly (treat as
“Read Only”)

+ If you're going to use a script multiple times, turn it
into a tool:
+ document it
+ create versions
+ make your command-line arguments clear
+ sharing in a version-controlled repository

Chapter |

+ Publish both your scripts and data

+ Also publish your documentation and document
everything!

+ What'’s the difference between documenting a script and
a project? How might we do both?

+ Make an analysis and the figures showing the results
of an analysis the product of a script

Intro. to Computational Methods
UNIX

+ UNIX is an operating system originally developed by
AT&T’s Bell Labs in the 1960’s (then Novell, then
The Open Group)

+ “Operating System” = Suite of programs that make
your computer work

+ macOS is one flavor of UNIX; others are Linux,
Solaris, BSD

Intro. to Computational Methods
UNIX

The UNIX OS has three components:

(1) The Kernel: OS Hub; allocates memory and
time

(2) The Shell: Interface between user and the
kernel; the shell searches for command files called
by user and passes requests to the kernel

(3) Programs: Commands called by the user

Intro. to Computational Methods
UNIX

+ UNIX is modular: What does this mean?
+ UNIX handles data as a stream

+ A given program generates standard output and
standard error streams: VWhat is the difference!?

+ How can we redirect streams?

(]

Standard out

Standard out (
Display Program Display Program
Standard errorl
Standard error™ T T

(a) Standard in (b) Standard in

Introduction and Basic Unix
Our Computational Goals for Today

|. Make sure everyone has a Shell solution
2. Installation of GitBash if necessary

3. Clone the Git repository for the
textbook and the course

4. Work through a Basic Unix example

Introduction and Basic Unix
Where to from here!?

|. If the basic Unix commands in our example were all new

(and even if they weren’t!), you should consider working
through the Unix portions of these tutorials :

https://sites.google.com/site/eeob563/computer-labs/Lab- |

http://korflab.ucdavis.edu/Unix_and Perl/

2. If you haven’t already, read Chapters |-3 of Buffalo
For Chapter |, create a text snippet in Slack with a few
favorite points and any questions on points that were
not clear, and we’ll discuss these on Friday

We'll also discuss and work through examples from
Chapter 3 on Friday

http://korflab.ucdavis.edu/Unix_and_Perl/

